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Porous Materials

A material that consists of solid domains and pore voids

e |arge surface areas (ex. ashes ~m?/g)
but much larger surfaces can be reached
with zeolithes, activated carbon ~1000 m?/g

Courtesy of P. Levitz,
reconstruction of Vycor

Activated carbon: a
disordered porous carbon




Length Scales and Confinement

e Confinement

Independently of the pore morphology,
decreasing the pore size H increases the
surface to volume ratio S/V ~ 1/H

Nanoporous solids D ~ ¢




Porous Materials @ ch%

Both thermodynamics and dynamics
of nanoconfined fluids are modified
with respect to their bulk counterpart

< New phenomena such as phase transitions driven
by surface or confinement (ex: Equation de Kelvin)

< Interplay between adsorption and transport
The rich and complex behavior of confined fluids



In our everyday life

® Soil (multi-scale) porosity is crucial for the nitrogen
and carbon cycles as it ensures exchange
between the soil and the atmosphere

Nitrogen-fixing
soil bacteria

©

Water vapor produced
by fuel combustion

CarbOnﬁ soot p?(")duced
by the aircraft engine

Nitrogen-fixing
bacteria in
root nodules
of legumes

Nitrogen in - W
atmosphere (N3)

Nitrates (NO5")

(aerobic and anaerobic
bacteria and fungi)

Nitrifying

Ammonification Nitrification @ bacteria

Ammonium (NH*) &

Nitrifying
bacteria

Ice clusters

Fomation + impact on the environment of these ice clusters still poorly understood

(difficult to get samples upon the same conditions ~above 8000 m and -40°C)



In our everyday life

Concrete is responsible Understanding their properties including
—> their ageing and sensitivity to external

for 7-8% of CO, ad _ _
emission on Earth conditions is therefore of key importance

[Beaudoin and Mc Innis, 1974]

Cement pore saturated

with benzene
Same effect as with water

(photo : Cours de H. Van Damme,
Ecole thé maticque 2003)

Cryosuccion

PC - I:)L = AS(T N Tm) Olivier Coussy
(1953-2010)




Applications: Catalysis, Separation

e Catalysis

v 0;}; 3 @Q’ Cracking,
QNN e 7AW isomerisation
e
(L

and hydrocarbon
synthesis for oil
industry

From Beck’s group at UMich
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® Phase separation

Separation of
xylenes from
hydrocarbons,

O, bottles from
ambient air
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Adsorption in multiscale solids
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Molecular Simulation

® Nanoporous silica model

» Si
e O

SiO,
block

e Grand Canonical Monte Carlo simulations
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Bulk reservoir



Adsorption in Porous Materials
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Derjaguin’s model

Q =—PgVg — PV — PV, + 2Ayg + 2Ay,, + 2AW(e)

IT(e) =- dW(e)/de = Pg - P,
W(e) = - Ag\/127e? (van der Waals forces)
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Nucleation vs Surface Pinning @ L@Eﬂ

Condensation pressure is always
lower than for a regular pore of
De Jong, the same diameter
Fajula et al.

Desorption occurs either through
« pore blocking » or cavitation
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Criticality of Confined Fluids
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Darcy law and Poiseuille flow

Darcy law

VP

Poiseuille Flow

v, (nm/ps)
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Darcy law

J=-p

k
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k permeability is not an intrinsic
constant of a material as it depends

on fluid, temperature, transport regime,
etc.

The concept of viscosity at the nanoscale
has no clear definition (as it assumes that
hydrodynamics remains valid).



Hydrodynamics Breakdown

ov Assumes time scale separation between
Yo, Y = VP +nV°v|- (v stress relaxation 7 inside the fluid
L particle and momentum transfer T

(Bocquet and Charlaix, Chem. Soc. Rev. 2010)

1
= m Oy (t)UXy (0)dt ~ exp[—t /tR] —> g ~1ps
B
N nk? p
A

< Hydrodynamic regime o/ nk? >> t,
Breakdown k ~ 1/L (L = 1 nm)



Statistical Mechanics Model

[Exact result from the

J=- ,OXVP — J=-pKVP  with KNpk_BOT Fluctuation Dissipation
Theorem]

D, = jo <Veom (0)Veon (t) >dt
o methane
= propane
D, = | "< v(0)v(t) > dt °
° S dodecane

D, ~ D,

0.1 1.0
D, [1078 m?/s]

< Build a simple microscopic model of
hydrocarbon transport based on Statistical

Mechanics and express K ~ D//p




Free Volume Theory

Vmol (N)

Ds(N) ~Dg(0) exp —am

Vinot (N) = Voo (N) = Veree(N) ~ N

QF ¢ Asimple “Stat Mech”
methane / model is built by using the
St propane -’ fluctuation-dissipation
hexane /
K(n+n,) ol r, theorem
~ dodecane
Ds/pkT ) ‘ / « This model does not use
= /P macro concepts
i “,9// (viscosity) and relies on
P > simple concepts such as
----- ,i.' | | . | | free volume
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Falk et al. Nature Comm. 2015



Conclusion @ L‘rﬁﬂ

1 Nanoscale transport requires statistical mechanics
modelling to avoid the use of macroscopic
concepts such as viscosity

1 A simple multiscale model is developed to
capture adsorption/transport in porous media
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